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Errata 
This report, originally published in August 2017, was revised in January 2019. The equations for 
velocities originally shown in Figure 7 were removed, as they no longer correspond to the same 
set of equations in NREL/TP-5000-70639. The discrepancy was caused by a change in the frame 
of reference for the roller speed measurement. The figure itself was also updated to match a 
similar figure in NREL/TP-5000-70639. Additionally, the figure caption was updated to indicate 
that the roller speed shown in the figure was from a previous experiment, not the work described 
in this report.  
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1 Abstract 
The most common failure mode in wind turbine gearboxes is axial cracking in intermediate and 
high-speed-stage bearings, also commonly called white-etching cracks (WECs). Although these 
types of cracks have been reported for over a decade, the conditions leading to WECs, the 
process by which this failure culminates, and the reasons for their apparent prevalence in wind 
turbine gearboxes are all highly debated. This paper summarizes the state of a multipronged 
research effort to examine the causes of WECs in wind turbine gearbox bearings. Recent efforts 
have recreated WECs on a benchtop test rig in highly loaded sliding conditions, wherein it was 
found that the formation of a dark etching microstructure precedes the formation of a crack, and 
a crack precedes the formation of white-etching microstructure. A cumulative frictional sliding 
energy criterion has been postulated to predict the presence of WECs. Bearing loads have also 
been measured and predicted in steady state and transient drivetrain operations in dynamometer 
testing. In addition, both loads and sliding at full scale will be measured in planned uptower 
drivetrain testing. If the cumulative frictional sliding energy is the dominant mechanism that 
causes WECs, understanding the amount of frictional sliding energy that wind turbine bearings 
are subjected to in typical operations is the next step in the investigation. If highly loaded sliding 
conditions are found uptower, similar to the examined benchtop levels, appropriate mitigation 
solutions can be examined, ranging from new bearing coatings and improved lubricants to 
changes in gearbox designs and turbine operations.  
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2 Introduction 
Failures in gearbox bearings have been the primary source of reliability issues for wind turbine 
drivetrains, leading to costly downtime and unplanned maintenance. The most common failure 
mode is attributed to so-called axial cracks or white-etching cracks (WECs), which primarily 
affect the intermediate and high-speed-stage bearings. According to the Gearbox Reliability 
Database maintained by the National Renewable Energy Laboratory, bearing failures account for 
over 60% of all failures, and axial cracking represents over 70% of all bearing failures. “Axial 
crack” refers to the orientation of the crack as it appears on the raceway of the bearing inner ring. 
These cracks tend to propagate to spalls or lead to a complete splitting of the ring. Upon cross-
sectional and metallographic analysis of the cracked bearing, the microstructure of the steel 
surrounding the crack is observed to have experienced alterations. The altered steel 
microstructure is evident by how the material responds to chemical etching in which the 
alteration appears white compared to the unaltered material, lending to the name “white-etching 
cracks.” These failures in wind turbine bearings occur well before the design life as predicted by 
the standard L10 life defined by the International Organization for Standardization and American 
Bearing Manufacturers Association. Furthermore, the morphology of the crack and alteration of 
the microstructure is not consistent with typical features observed in classical rolling contact 
fatigue, namely: butterflies and white-etching bands. This inconsistency indicates that the WEC 
failures are either the result of drivers beyond the load used in calculating L10 rolling contact 
fatigue bearing life, or the load in wind turbine bearings are not well understood and exceed 
predicted levels. 

Considerable research efforts have focused on understanding the possible root causes of WECs, 
which have included: high strain rates [1−3], hydrogen embrittlement [4,5], bearing skidding and 
sliding [6−8], inclusions [2,3,5,9,10], bearing assembly, corrosion fatigue cracking [11], and 
electrical current [12,13]. To date, there is little consensus on the root causes of WECs in wind 
turbine bearings. It is the aim of the current study to evaluate the causes of WECs in wind 
turbine bearings with a multipronged approach that includes: a system-level analysis to measure 
the real operating conditions in a wind turbine gearbox and the contact conditions that exist in 
field-representative operations, and a tribological and materials analysis to understand how 
bearing steel responds at a microstructural level to a range of contact conditions. The current 
work will focus on the influence of skidding/sliding between the bearing rolling element and the 
raceway.  
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3 Tribological and Material Testing 
To provide a platform to readily evaluate the range of possible root causes of WECs cited in the 
introduction, a tribological benchtop rig is utilized that is capable of replicating the contact 
conditions that are experienced between a rolling element and raceway in a wind turbine gearbox 
bearing. The benchtop rig is capable of inducing a range of highly controllable contact 
conditions, including load, slide-to-roll ratio (SRR), speed, and temperature. The rig is also 
configurable to test nonstandard conditions like electrical currents across the contact. The 
advantage of conducting tests on a benchtop rig is that it not only accelerates the ability to 
evaluate a range of conditions on WEC formation, but also enables detailed study of the 
evolution of the failure initiation and propagation through post-test microstructural analysis of 
the test samples. 

3.1 Benchtop Testing 
The tribological test rig used in this study is a PCS Instruments Micro Pitting Rig, shown in 
Figure 1, which provides a three-ring-on-roller splash-lubricated line contact and allows for 
testing at customizable user-specified conditions: SRRs ranging from pure rolling to pure sliding, 
at loads ranging from 0.5 gigapascal (GPa) to 3 GPa, and at lubricant temperatures in excess of 
100°C. 

 

Figure 1. Micro Pitting Rig tribological benchtop test rig overall view (a) and view of the test 
housing showing the three-ring-on-roller configuration (b) [5] 

The lubricant used in this study is a fully formulated gear oil mix consisting of Group I+IV 
semisynthetic base stock, viscosity-grade 68. This specific gear oil formulation has been shown 
in several studies to readily form WECs. It is used in this current study to demonstrate which 
range of contact conditions would lead to WEC formation. The test samples are made of 
American Iron and Steel Institute 52100 through hardened, tempered, martensitic steel for both 
the rollers and rings with a Rockwell C hardness of 60 and 63, respectively. Experiments were 
conducted with a range of loads, speeds, and SRR conditions, as shown in Table 1. 
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Table 1. Benchtop Test Conditions and Results with Calculated Cumulative Frictional Energy 

Test 
Normal 
Load 
(N) 

Contact 
Stress 
(GPa) 

Rolling 
Speed 
(m/s) 

 
SRR 
(%) 

Contact 
Cycles 
(x106) 

 
WECs? 

 
E 

(megajoule) 

1 500 1.9 1 -30 38.2 Yes 8.04 

2 500 1.9 1 +30 18.2 No 3.32 

3 500 1.9 1 -5 100 No 3.52 

4 500 1.9 1 +5 34.5 No 1.03 

5 40 0.5 3.4 -30 100 No 2.89 

6 135 1.0 3.4 -30 100 Yes 7.93 

7 300 1.5 3.4 -30 100 Yes 13.14 

8 500 1.9 3.4 -30 42 Yes 9.70 

9 500 1.9 1 -30 20 No 4.63 

10 500 1.9 1 -30 30 Yes 6.26 

Tests were concluded when a spall failure occurred, as indicated by the measured vibration 
between the roller and top ring. If no failure occurred, the test was stopped at 100 million cycles. 
To determine if WECs were formed, the roller sample was sectioned after the test and exposed to 
a Nital etchant, as shown in Figure 2. 

 
Figure 2. Benchtop test sample roller post-test; top view of roller race with spall (a) and 

circumferential cross section etched showing WECs (b) [5] 

The first four tests, 1–4, show the dependence of WEC formation under a range of SRR 
conditions between +/-5% and +/-30%. Of these four tests, only the test performed at -30% SRR 
resulted in WEC formation. The next four tests, 5–8, show the WEC dependence under a range 
of load conditions between 0.5 and 1.9 GPa. Only the test at 0.5 GPa did not result in a WEC 
within the 100-million-contact-cycle duration. The final two tests, 9–10, showed the effect of test 
duration between 20 and 30 million cycles. Both tests were stopped deliberately at the respective 
contact cycles. The test at 20 million cycles did not result in WECs, whereas the test that stopped 
at 30 million cycles did. To correlate these tests using one parameter, a value was calculated to 
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represent the cumulative frictional heat energy, E, generated during each test, as demonstrated in 
Eq. 1, where ΔV is the sliding speed (the difference between the velocity of the ring and the 
velocity of the roller at the contact), μ is the average measured friction coefficient, N is the 
normal load, and t is the total testing time: 

 3
2

E V Ntµ= ∆  (1) 

Considering this energy parameter, the results of the 10 tests are plotted with respect to the 
occurrence and number of WECs observed in the roller sample post-test as shown in Figure 3. 
This plot shows a threshold of WEC formation with respect to the cumulative frictional heat 
energy parameter. The magnitude of this energy parameter is likely to only be specific to the 
current benchtop test configuration, materials, lubricant, and conditions; therefore, it is not 
necessarily directly translatable to the full-scale application. However, the premise is that 
frictional heat resulting from high-load and sliding contact is likely one possible driver for WEC 
formation in wind turbine gearbox bearings. It is not evident from these results what physical 
connection friction energy has on WEC formation, as it could be a response of the material to the 
heat input or a response of the lubricant resulting in hydrogen liberation, leading to material 
embrittlement. These physical responses will be the focus of future research. However, the 
likelihood of high-load and sliding contact conditions is considered at the full scale in the 
following sections of this report. 

 
Figure 3. Plot of the results from the benchtop tests showing the threshold of WEC formation with 

respect to cumulative frictional heat energy [5]  
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4 Full-Scale Gearbox Testing 
Currently, there is only speculation, rather than strong evidence, that high-load and sliding 
contact conditions in excess of the proposed criteria occur during typical wind turbine 
operations. In recognition of this, full-scale gearbox testing is required to determine the causal 
factors that result in bearing roller sliding and high loads. That is, which plant and turbine 
operations, configurations, and situations result in the bearing roller sliding, load, and 
tribological conditions sufficiently often enough to exceed the cumulative frictional heat energy? 
A secondary goal is to examine the presence of additional tribological factors in operation, such 
as temperatures, stray currents, and moisture also suspected of relating to WECs. These full-scale 
test results might also inform additional cases for the current benchtop tests; for example, if the 
loads, sliding, or other tribological factors measured were well in excess of or well below those 
already tested. 

4.1 750-Kilowatt Gearbox 
Field-representative dynamometer tests of the Gearbox Reliability Collaborative 750-kilowatt 
drivetrain were conducted [14] and high-speed-shaft and bearing loads were examined. Bearing 
roller speed was not measured. Steady-state operations were examined first [15], whereas more 
recently, bearing contact stresses and roller sliding were examined during normal power 
production, braking, and grid-loss events [16]. As shown in Figure 4 through Figure 6, roller 
sliding was evident within the bearing outer race loads, although without dedicated roller speed 
instrumentation its magnitude was unknown. 

    
Figure 4. Braking event speed and torque event (left) and resulting bearing roller contact stress 

and sliding indicator (right) 
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Figure 5. Grid-loss event speed and torque event (left) and resulting bearing roller contact stress 

and sliding indicator (right) 

    
Figure 6. Normal power production speed and torque event (left) and resulting bearing roller 

contact stress and sliding indicator (right) 

4.2 1.5-Megawatt Gearbox 
Because of the importance of sliding to the formation of WECs, both loads and sliding will be 
measured in upcoming tests. Sliding must be measured, because it cannot be predicted with 
sufficient accuracy—especially in the highly dynamic wind turbine gearbox application. As 
shown in Figure 7, bearing roller sliding can be determined by the rotational speed of the shaft 
(ωs), bearing cages (ωc), and bearing rolling elements (ωr). Of all of these speeds, by far the most 
difficult to measure is the rolling element speed. Patented instrumentation from SKF will 
measure it by sensing the change in voltage in a nearby inductive coil as a magnetized roller 
rotates in operation [17]. 
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Figure 7. Bearing roller sliding velocities (left) and previous measurements (right). Illustration 

(right) by SKF [17] 

A commercial gearbox will be instrumented and installed in the GE 1.5 SLE turbine at the 
National Wind Technology Center in late 2017 [18]. As shown in Figure 8, the high-speed-shaft 
cylindrical roll bearing speeds will be measured along with torque, bending moments, and other 
tribological factors such as temperatures, humidity, stray current, and water-in-oil content, and 
correlated to the turbine and grid conditions over a range of controlled operations. 

 
Figure 8. High-speed-shaft instrumentation package  
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5 Summary 
Axial cracking or WEC bearing failures continue to have a significant impact on the reliable 
operation of wind turbine gearboxes, and the root cause of WECs are still a subject of scientific 
debate. This study demonstrates a multipronged research approach by the U.S. Department of 
Energy to investigate axial crack failures from a system level to a material/tribological level. The 
current work shows a benchtop test methodology that successfully replicates WEC formation 
under controlled contact conditions, from which an energy-based criteria related to frictional heat 
is identified for WEC formation. This driver for WEC formation depends on the occurrence of 
sliding/skidding between the bearing rolling element and race. Evidence of this roller sliding is 
demonstrated at the system level through analysis of a gearbox dynamometer test with field-
representative conditions. With a WEC formation methodology and operational understanding 
firmly established, the most cost-effective mitigation methods ranging from the part level (e.g., 
materials, coatings, lubricants, and microgeometry) to the system level (e.g., gearbox or bearing 
modifications, controller and converter software, mechanical torque-limiting devices) can be 
developed, tested, and verified. Future research activities will focus on assessing additional WEC 
drivers and identifying the physical processes at a material level. Additionally, in-field testing on 
a 1.5-megawatt turbine of high-speed-shaft bearings will be used to validate the actual conditions 
that could lead to axial crack bearing failures. 
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