

Leader in Tribology Test Equipment

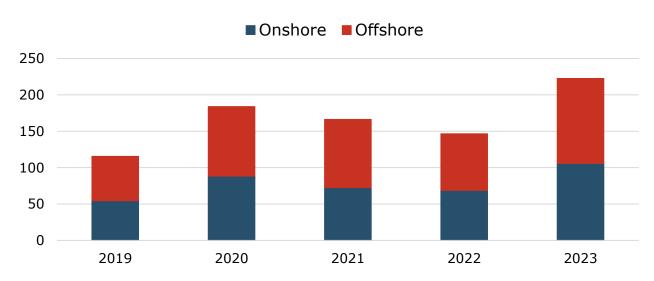
Wind Power Transmissions

Leaders In Tribology Test Equipment

Designing and manufacturing equipment for the testing of fuels and lubricants.

- **2,500** + Instruments installed
- 500 + Technical papers featuring equipment developed by PCS Instruments
- **100** + Countries using PCS Instruments equipment.
- **35** + Years of operation.

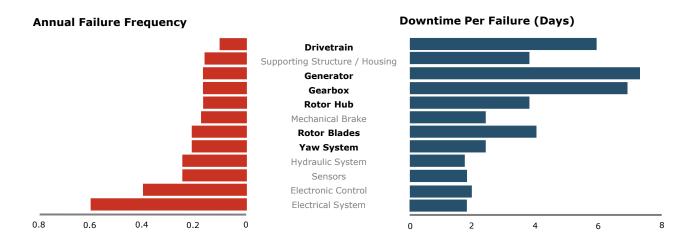
At PCS Instruments, we have been at the forefront of tribology innovation for over three decades, providing cutting-edge testing solutions for friction, wear, and lubrication across a variety of industries. As specialists in tribological research, we understand its critical role in the efficiency and durability of mechanical systems across a wide range of applications.



Global Wind Data

Insights from the Global Wind Report 2024

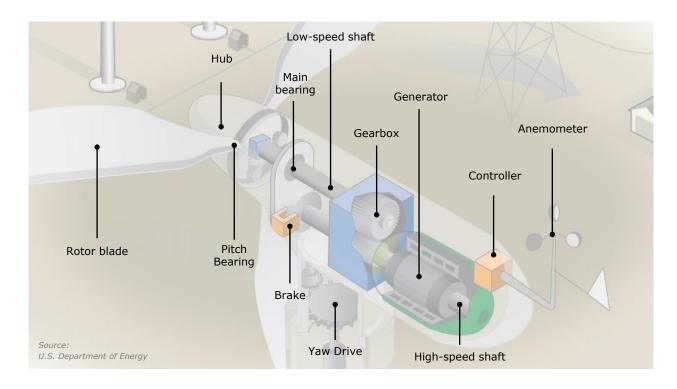
New Installations



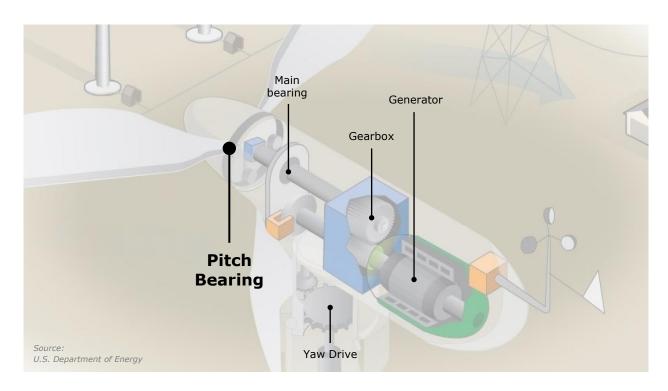
Global Wind Energy Market Expected To Grow On Average By 9% Each Year (2024 – 2028)

Technical Challenges

Obtained from 'Tribological Challenges and Advancements in Wind Turbine Bearings: A Review'

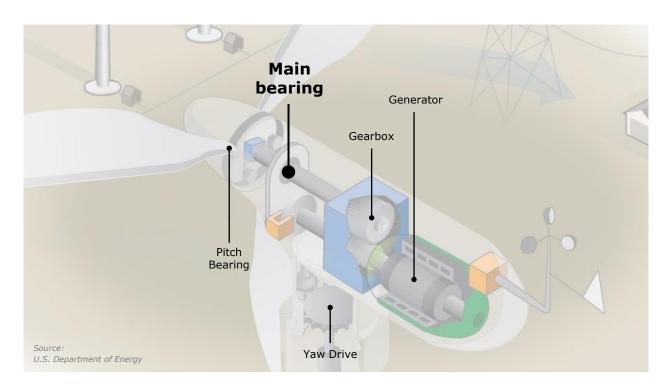

Anil Dhanola & H.C. Garg

Bold = Tribological Issues


Wind Turbine Drivetrains

Component	Function
Rotor blade	Covert kinetic energy of the wind into rotational mechanical energy
Hub	Holds the rotor blades and connects them to the main shaft
Main bearing	Supports the weight of the hub and rotor blades while transferring torque to the gearbox
Low-speed shaft	Transmits the rotational motion of the rotor to the gearbox
Gearbox	Increases rotational speed from a low-speed rotor to a higher speed electrical generator
High-speed shaft	Transfers rotational mechanical energy from the gearbox to the generator
Generator	Coverts rotational mechanical energy into electrical energy
Controller	Responsible for starting and shutting-down the wind turbine depending on the wind conditions.
Anemometer	Measures wind speed and transmits wind speed data to the controller
Yaw drive	Keeps the rotor facing into the wind as the wind direction changes
Brake	Controls overspeed, and provides parking and emergency braking

Pitch Bearings

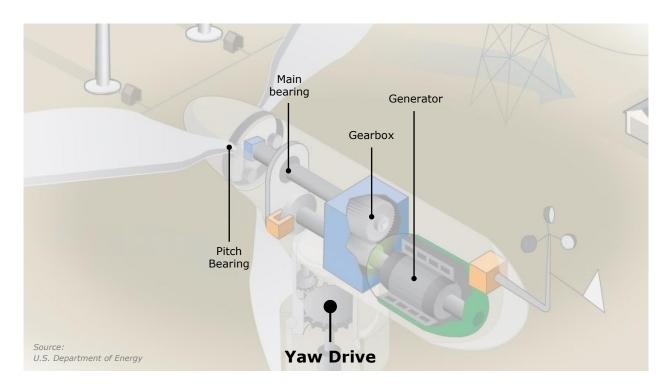

Туре	Characteristics	
Slewing bearings, typically double-rowed, 4-point contact ball bearings	High loadsSmall reciprocating mo vibrations from the win	vements induced by the pitch system or ad.
Resultant Wear / Damage	Lubricant Type	Relevant PCS Instruments
False BrinellingFretting Corrosion	• Grease	• HFRR • MPR+GI

Relevant Literature

Effect of Lubricant Properties and Contact Conditions on False Brinelling Damage

Rachel Januszewski, Victor Brizmer & Amir Kadiric

Main Bearings

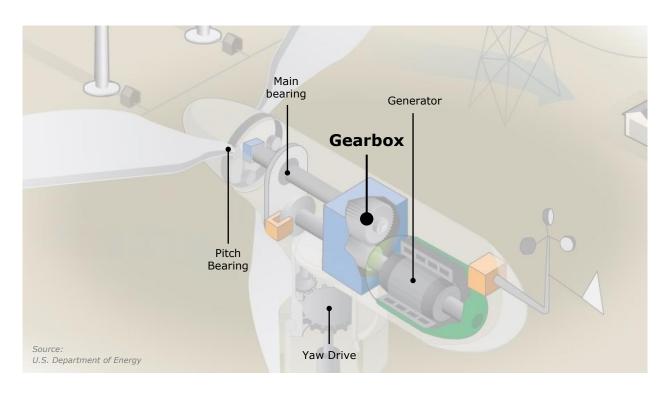

Туре	Characteristics	
Spherical / Tapered roller bearings. Interested in transitioning to pad bearings.	 Large component (~ 2m bore) Low speeds (~10rpm) Continually variable loads, including 	ng high thrust loads from the wind.
Resultant Wear / Damage	Lubricant Type	Relevant PCS Instruments
Abrasive wearScuffing / smearingMicro-pittingSpalling	• Grease	• MPR+GI • ETM

Relevant literature

Influence of Dumbbell Base Oil on Micropitting

Mao Ueda, Janet Wong & Hugh Spikes

Yaw Bearings

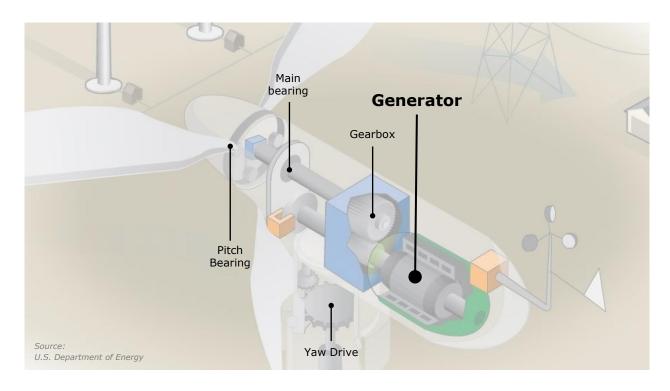

Туре	Characteristics	
Slewing bearings, typically 4-point contact ball, 8-point contact ball or crossed cylinder roller bearings	High static and dynamic loadsCorrosive environmentDifficult to maintain or replace	
Resultant Wear / Damage	Lubricant Type	Relevant PCS Instruments

Relevant Literature

In-Situ Observation of the Effect of the Tribofilm Growth on Scuffing in Rolling-Sliding Contact

Mao Ueda, Hugh Spikes & Amir Kadiric

Gearbox Bearings

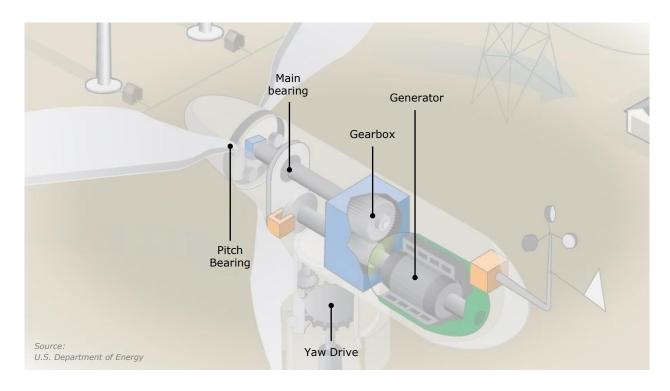

Туре	Characteristics	
Roller bearings (spherical, cylindrical and tapered)	Rapid acceleration and decelerationFluctuating temperaturesVibrations	n events
Resultant Wear / damage	Lubricant Type	Relevant PCS Instruments
WECs, leading to axial cracking	• Gear Oil	MPR ETM + SLIM

Relevant Literature

Investigation of Bearing Axial Cracking: Benchtop and Full-Scale Test Results

Jonathan Keller, Benjamin Gould & Aaron Greco

Generator Bearings


Туре	Characteristics	
Ball bearings	Stray currents	
Resultant Wear / Damage	Lubricant Type	Relevant PCS Instruments
 Grey frosting Fluting WECs Pitting	• Grease	• MTM-EC

Relevant Literature

Influence of Electric Potentials on Surface Damage in Rolling–Sliding Contacts Under Mixed Lubrication

Ammad Yousef, Hugh Spikes, Liang Guo & Amir Kadiric

In Summary

			Ti	ransmission Beari	ngs	Adjustmer	nt Bearings
			Main	Gearbox	Generator	Pitch	Yaw
Material	Cracks & fracture	Forced fracture					
failure		Fatigue fracture					
		Thermal cracking					
	Wear	Adhesive wear					
		Abrasive wear					
		Corrosion					
		Brinelling					
Premature	Plastic deformation	Excessive load	Х	Х	Х	Х	Х
fatigue		Loose fits	X	X	X	X	Х
		Misalignment	x	Х	x		
	Electric arc erosion	Excessive voltage	Х		X		
		Current leakage			X		
	Mounting failure	Overheating		Х	Х	Х	Х
		Inadequate bearing					
	Lubricant	Lubricant failure		Х	Х	Х	Х
		Contamination		Х	X	X	Х

A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings

Relevant Instruments / Accessories

MPR

Features:

- Capable of achieving over 1 million contact cycles per hour.
- Independently driven motors enable any slide-to-roll ratio and a wide range of speeds.
- Requires only a small sample volume (~150ml).
- · Continuously measures friction and acceleration during testing
- The only instrument specified in the 'SAE International MPR Micropitting Test Method ARP6991' standard for evaluating the micropitting performance of aviation turbine oil formulations.
- Grease testing is possible with the dedicated PCS Grease Injector system.

Key Technical Specifications:

Load	100 to 1250 N
Contact pressure	0.86 – 4.7 GPa
Entrainment speed	Up to 4 m/s
Slide-to-roll ratio	0 to +/- 200 % (+ Contra-rotation)
Temperature range	Ambient to 135 °C
Maximum roller torque	20 Nm (Total of all 3 contacts)

MPR + GI

The MPR GI delivers grease to the contact in a controlled, accurate and repeatable way, preventing starvation and allowing for the clear assessment of fatigue behaviour of greases.

Max. Syringe Volume

300ml

Rate of Injection

0.07 to +20,000 ml/Hr (grease consistency-dependent)

Max. NLGI Grade

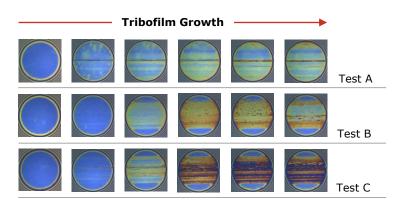
3

Relevant Instruments / Accessories

ETM

Features:

- Ball on disc benchtop tribometer for measuring the frictional properties of lubricated and unlubricated contacts under extreme contact pressures
- Independently driven ball and disc motors allows a range of slide roll ratios at loads up to 1650 N
- Optional SLIM system allows the study of tribofilm formation under extreme conditions.


Key Technical Specifications:

Load	100 to 1650 N
Contact pressure	Up to 3.5 GPa with AISI 52100 Steel specimens Up to 7.1 GPa with Tungsten Carbide specimens
Entrainment speed	Up to 3.5 m/s
Slide-to-roll ratio	0 to +/- 200 % (+ Contra-rotation)
Temperature range	Ambient to 150 °C
Test sample volume	30ml (10ml with optional pot filler)

ETM + SLIM

The Space Layer Imaging Method (SLIM) enables users to characterise the activity of tribofilm forming additives within different lubricant packages – E.g. extreme pressure and antiwear additives.

The details given in these images are used by chemists and oil formulators to develop new oils

Relevant Instruments / Accessories

HFRR

Features:

- A ball-on-plate reciprocating friction and wear test system, for assessing the performance of both fuels and lubricants under boundary conditions.
- Widely used to study fretting wear phenomena.
- Actively controlled environmental chamber allows for precise control of temperature and humidity

MTM + EC

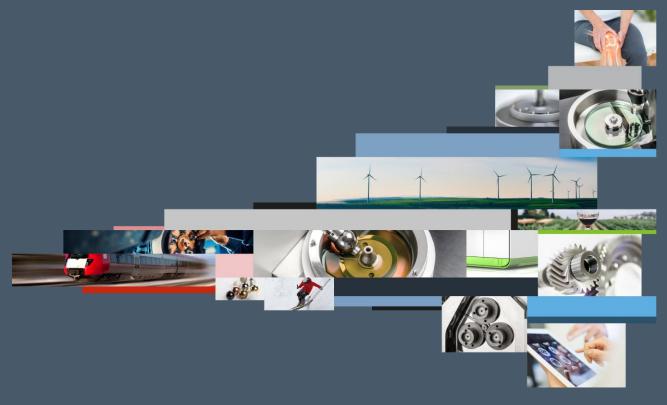
Features:

- Enables novel investigations into the effects of electric potentials on tribological contacts.
- Both AC and DC voltages can be applied.
- Ball and disc specimens are electrically isolated, allowing either specimen to act as the anode or cathode.
- User-provided oscilloscopes and power supply units allow for extensive customisation.
- High sampling rates of up to 80M samples per second are possible, enabling individual discharge events to be identified.
- Full control and automation possible through the MTM-EC software.

MTM-EC 🖖

EC potentials have been shown to effect:

- Friction
- Wear
- Lubricant additive performance


Key EC Technical Specifications:

AC		Low Range	High Range
	Voltage (Pk/Pk)	0 to 20V	0 to 30V
	Current (Pk/Pk)	0 to 400mA	0 to 580mA
С		Low Range	High Range
	Voltage	0 to 10V	0 to 35V

Leader in Tribology Test Equipment

Wind Power Transmissions

